

PIC32MX1XX/2XX/5XX 64/100-PIN FAMILY

PIC32MX1XX/2XX/5XX 64/100-pin Family Silicon Errata and Data Sheet Clarification

The PIC32MX1XX/2XX/5XX 64/100-pin family devices that you have received conform functionally to the current Device Data Sheet (DS60001290F), except for the anomalies described in this document.

The errata described in this document will be addressed in future revisions of the PIC32MX1XX/2XX/5XX 64/100-pin family silicon.

Note: The silicon issues discussed in the following pages are for silicon revisions with the Device and Revision IDs listed in Table 1 and Table 2. The last column of each table represents the latest silicon revision for the devices listed. If applicable, the silicon issues are summarized in Table 3.

Data Sheet clarifications and corrections, if applicable, start on page 10.

The silicon revision level can be identified using the current version of MPLAB[®] X IDE and Microchip's programmers, debuggers and emulation tools, which are available at the Microchip corporate web site (www.microchip.com).

For example, to identify the silicon revision level using MPLAB X IDE in conjunction with a hardware debugger:

- Using the appropriate interface, connect the device to the hardware debugger.
- 2. Open an MPLAB X IDE project.
- Configure the MPLAB X IDE project for the appropriate device and hardware debugger.
- 4. Select <u>Window > Dashboard</u>, and then click the **Refresh Debug Tool Status** icon ().
- The part number and the Device and Revision ID values appear in the **Output** window.

Note: If you are unable to extract the silicon revision level, please contact your local Microchip sales office for assistance.

The Device and Revision ID values for the various PIC32MX1XX/2XX/5XX 64/100-pin family silicon revisions are shown in Table 1 and Table 2.

TABLE 1: SILICON DEVREV VALUES FOR DEVICES WITH 256 KB OR 512 KB OF FLASH MEMORY

Dout Number	Device ID ⁽¹⁾	Revision ID for Silicon Revision ⁽¹⁾
Part Number	Device ID(-)	Α0
PIC32MX150F256H	0x06A10053	
PIC32MX150F256L	0x06A11053	
PIC32MX170F512H	0x06A30053	
PIC32MX170F512L	0x06A31053	
PIC32MX250F256H	0x06A12053	
PIC32MX250F256L	0x06A13053	00
PIC32MX270F512H	0x06A32053	0x0
PIC32MX270F512L	0x06A33053	
PIC32MX550F256H	0x06A14053	
PIC32MX550F256L	0x06A15053	
PIC32MX570F512H	0x06A34053	
PIC32MX570F512L	0x06A35053	

Note 1: Refer to the "**Memory Organization**" and "**Special Features**" chapters in the current Device Data Sheet (DS60001290**F**) for detailed information on Device and Revision IDs for your specific device.

TABLE 2: SILICON DEVREV VALUES FOR DEVICES WITH 64 KB OR 128 KB OF FLASH MEMORY

Part Number	Device ID ⁽¹⁾	Revision ID for S	Silicon Revision ⁽¹⁾
Part Number	Device iD(*)	Α0	A2
PIC32MX120F064H	0x06A50053		
PIC32MX130F128H	0x06A00053		
PIC32MX130F128L	0x06A01053		
PIC32MX230F128H	0x06A02053	0x0	0x2
PIC32MX230F128L	0x06A03053		
PIC32MX530F128H	0x06A04053		
PIC32MX530F128L	0x06A05053		

Note 1: Refer to the "**Memory Organization**" and "**Special Features**" chapters in the current Device Data Sheet (DS60001290**F**) for detailed information on Device and Revision IDs for your specific device.

TABLE 3: SILICON ISSUE SUMMARY

Module	Feature Item		Issue Summary	Device Flash	Affected Revisions	
			,	Memory (KB)	Α0	A2
ADC	Differential	4	The ADC module is not within the published data sheet		Х	Х
ADC	Nonlinearity	1.	specification when operating at a conversion rate above 500 ksps.	256/512	Х	_
			A clock signal is present on the CLKO pin, regardless of the clock source and setting of the CLKO Enable	64/128	Х	Х
Clock	Clock Out	2.	Configuration bit, during a Power-on Reset (POR) condition.	256/512	Х	ı
JTAG	Boundary	3.	Boundary scan in not supported.	64/128	Х	Х
VIAG	Scan	J.	Boundary Scan in not supported.	256/512	Х	_
Watchdog Timer	Windowed	4.	Clearing the Watchdog Timer inside the window when in	64/128	Х	Х
Waterland Timer	Watchdog	٠,	Window mode may cause a reset.	256/512	Х	_
USB	Idle Interrupt	5.	USB Idle interrupts cease if the IDLEIF flag is cleared	64/128	Х	Х
OOD	idle interrupt	J.	and the bus is left idle for more than 3 ms.	256/512	Х	_
UART	Receive	6.	A receive FIFO overflow condition causes the shift register to stop receiving data and lose synchronization	64/128	Х	Х
OAN	Overflow	0.	with the serial data stream.		Х	_
Comparator	_	7.	Some operational mode combinations of the Comparator Voltage Reference do not meet the data sheet	64/128	Х	Х
Voltage		7.	specifications.	256/512	Х	_
Comparator Voltage		8.	The Comparator Voltage Reference always behaves as if		Х	Х
Reference		0.	the CVRR bit is = 1, which specifies a range of 0 to 0.67 CVRSRC with a CVRSRC/24 step size.	256/512	Х	I
CTMU	Trigger	9.	The EDGEN bit generates a glitch on the CTED input	64/128	Х	Х
CTIVIO	rrigger	9.	causing a false trigger.	256/512	Х	_
CTMU	Module	10.	The CTMU module is not functional.	64/128	Х	
CTIVIO	Operation	10.	The Crivio module is not functional.	256/512	Х	1
ADC	IV/pcc	11	The IVESS input to the ADC is not functional	64/128	Х	X
ADC	IVREF	11.	The IVREF input to the ADC is not functional.	256/512	Х	_
LIVD	LIVDD	12.	On power-up, the High-Voltage Detect Reset event flag,	64/128	Х	Х
HVD	HVDR	12.	HVDR bit in the RCON register, is being set.		Х	_
Power-Saving	Idlo	13.	On exit from Sleep mode, the SLEEP and IDLE status	64/128	Х	Х
Modes	Idle	13.	bits in the RCON register are being set.		Х	
UART	Auto boud	14.	Auto-baud does not function to set the baud rate.	64/128	Х	Х
UART	Auto-baud	14.	Auto-badd does not function to set the badd rate.	256/512	Х	_
Bus Matrix	Flash Size	15.	The Flash Memory Size register (BMXPFMSZ)	64/128	Date co	de pre-
Dus Matrix	i iasii Size	13.	was not programmed with the correct value.	256/512	1750	

Legend: An 'X' indicates the issue is present in this revision of silicon;

shaded cells with an Em dash ('—') indicate that this silicon revision does not exist for this issue; blank cells indicate an issue has been corrected or does not exist in this revision of silicon.

TABLE 3: SILICON ISSUE SUMMARY (CONTINUED)

Module	Feature	Item	Issue Summary	Device Flash	Affected Revisions	
			(KB)	Memory (KB)	Α0	A2
I/O Port	Drive	16.	Pins RD15 & RF13 must be considered 4x Sink	64/128	Х	Х
I/O FOIL	Strength	10.	Driver Pins and not 8x Sink Driver Pins.	256/512	Х	
I/O Port - Initial	Initial Pin	17.	Random pin active output on power up.	64/128	Х	Х
Pin State State 17. Random pin ad		realition pin active output on power up.	256/512	Х	_	
USB Low-	USB Low	10	USB Low-Speed Device and Host mode is not	64/128	Х	Х
Speed Mode	Speed	i 18 i	supported.	256/512	Х	_

Legend: An 'X' indicates the issue is present in this revision of silicon; shaded cells with an Em dash ('—') indicate that this silicon revision does not exist for this issue; blank cells indicate an issue has been corrected or does not exist in this revision of silicon.

Silicon Errata Issues

- **Note 1:** This document summarizes all silicon errata issues from all revisions of silicon, previous as well as current. The table provided in each issue indicates which issues exist for a particular revision of silicon based on Flash memory size.
 - 2: The following applies to the Affected Silicon Revision tables in each silicon issue:
 - An 'X' indicates the issue is present in this revision of silicon
 - · Shaded cells with an Em dash ('--') indicate that this silicon revision does not exist for this issue
 - · Blank cells indicate an issue has been corrected or does not exist in this revision of silicon.

1. Module: ADC

When the ADC is configured for 10-bit operation, the specifications in the data sheet are not met for operation above 500 ksps.

Work around

For 600 ksps operation, RIN = 500 ohms, TSAMP = 2 TAD. The module specifications are shown in Table 4. For 1000 ksps operation, RIN = 200 ohms, TSAMP = 2 TAD. The module specifications are shown in Table 5.

TABLE 4: 600 KSPS OPERATION

Parameter No.	Symbol	Minimum	Typical	Maximum	Units		
AD17	RIN	_	_	200	Ohm		
ADC Accuracy – Measurements taken with External VREF+/VREF-							
AD21c	INL	-1.5	_	1.5	LSB		
AD22c	DNL	-1.4	_	2.1	LSB		
AD23c	GERR	-1.2	_	1.2	LSB		
ADC Accuracy – Measurements taken with Internal VREF+/VREF-							
AD21d	INL	-1.5	_	1.5	LSB		
AD22d	DNL	-1.4	_	2.1	LSB		

TABLE 5: 1000 KSPS OPERATION

Parameter No.	Symbol	Minimum	Typical	Maximum	Units		
AD17	RIN	_	_	200	Ohm		
ADC Accuracy – Measurements taken with External VREF+/VREF-							
AD21c	INL	-5.2	_	6.5	LSB		
AD22c	DNL	-3.4	_	7	LSB		
AD23c	GERR	-1.5	_	1.5	LSB		
ADC Accuracy – Measurements taken with Internal VREF+/VREF-							
AD21d	INL	-5.2	_	6.5	LSB		
AD22d	DNL	-3.4	_	7	LSB		

Device Flash	Device Silicon Revision				
Memory (KB)	A0	A2			
64/128	Χ	Х			
256/512	Х	_			

2. Module: Clock

A clock signal is present on the CLKO pin, regardless of the clock source and setting of the CLKO Enable Configuration bit, OSCIOFNC (DEVCFG1<10>), during a Power-on Reset (POR) condition.

Work around

Do not connect the CLKO pin to a device that would be adversely affected by rapid pin toggling or a frequency other than that defined by the oscillator configuration. Do not use the CLKO pin as an input if the device connected to the CLKO pin would be adversely affected by the pin driving a signal out.

Affected Silicon Revisions

Device Flash	I	Device Silicon Revision			1
Memory (KB)	A0	A2			
64/128	Х	Х			
256/512	Х	_			

3. Module: JTAG

Boundary Scan is not supported.

Work around

None.

Affected Silicon Revisions

Device Flash	ı	Revision	sion		
Memory (KB)	A0	A2			
64/128	Х	Х			
256/512	Х	_			

4. Module: Watchdog Timer

When the Watchdog Timer module is used in Windowed mode, the module may issue a reset even if the user tries to clear the module within the allowed window.

Work around

None.

Affected Silicon Revisions

Device Flash	I	Device Silicon Re			1
Memory (KB)	A0	A2			
64/128	Х	Х			
256/512	Х	_			

5. Module: USB

If the bus has been idle for more than 3 ms, the IDLEIF interrupt flag is set. If software clears the interrupt flag and the bus remains idle, the IDLEIF interrupt flag will not be set again.

Work around

Software can leave the IDLEIF bit set until it has received some indication of bus resumption (i.e., Resume, Reset, SOF, or Error).

Note:	Resume and Reset are the only interrupts that should be following IDLEIF assertion. If the IDLEIF bit is set, it should be okay to suspend the USB module (as long as this code is protected by the GUARD and/or ACTPEND logic). This will require software to clear the IDLEIF interrupt enable bit to exit the USB ISR (if
	using interrupt driven code).

Device Flash	Device Silicon Revision				
Memory (KB)	A0	A2			
64/128	Х	Х			
256/512	Χ	_			

6. Module: UART

During receive FIFO overflow conditions, the shift register stops receiving data, which causes the UART to lose synchronization with the serial data stream.

The only way to recover from this condition is to turn the UART OFF and ON until it synchronizes. This could require several OFF/ON sequences.

Work arounds

Work around 1:

Avoid the RX overrun condition by ensuring that the UARTx module has a high enough interrupt priority such that other peripheral interrupt processing latencies do not exceed the time to overrun the UART RX buffer based on the application baud rate. Alternately or in addition to, set the URXISEL bits in the UxSTA register to generate an earlier RX interrupt based on RX FIFO fill status to buy more time for interrupt latency processing requirements.

Work around 2:

If avoiding RX FIFO overruns is not possible, implement a ACK/NAK software handshake protocol to repeat lost packet transfers after restoring UART synchronization.

Affected Silicon Revisions

Device Flash	I	Device S	Silicon I	Revision	1
Memory (KB)	A0	A2			
64/128	Х	Х			
256/512	Х	_			

7. Module: Comparator Voltage

Three of the four Comparator Voltage Reference operational modes, defined in Table 6, do not meet data sheet specifications.

TABLE 6:

CVRCON <cvrss></cvrss>	CVRCON <cvrr></cvrr>	Accuracy Specification	Actual Accuracy
0 = (AVDD/AVSS)	0 = (CVRSRC/32)	0.5 LSB	8.2 LSB
0 = (AVDD/AVSS)	1 = (CVRSRC/24)	0.25 LSB	0.34 LSB
1 = (VREF+/VREF-)	0 = (CVRSRC/32)	0.5 LSB	8.2 LSB

Work around

If possible, set both the CVRSS bit (CVRCON<4>) and the CVRR bit (CVRCON<5>) to '1', which specifies the Comparator Voltage Reference source CVRSRC = [(VREF+) - (VREF-)] and 0 to 0.67 CVRSRC with a step size of CVRSRC/24, respectively.

Affected Silicon Revisions

Device Flash	Device Silicon Revision				
Memory (KB)	A0	A2			
64/128	Х	Х			
256/512	Χ	_			

8. Module: Comparator Voltage Reference

The Comparator Voltage Reference always behaves as if the CVRR bit (CVRCON<5>) is equal to '1', which specifies a range of 0 to 0.67 CVRSRC with a step size of CVRSRC/24, instead of a range of 0.25 to 0.75 CVRSRC and a step size of CVRSRC/32.

Work around

If possible, set the CVRR bit (CVRCON<5>) = 1 (i.e., 0 to 0.67 CVRSRC, with CVRSRC/24 step size, respectively).

Device Flash	I	Device \$	Silicon F	Revision	1
Memory (KB)	Α0	A2			
64/128	Х	Х			
256/512	Х	_			

9. Module: CTMU

The EDGEN bit generates a glitch on CTED input causing a false trigger.

Work around

None.

Affected Silicon Revisions

Device Flash	I	Revision	1		
Memory (KB)	A0	A2			
64/128	Х	Х			
256/512	Х	_			

10. Module: CTMU

The CTMU module is not functional.

Work around

None.

Affected Silicon Revisions

Device Flash	Device Silicon Revision				
Memory (KB)	A0	A2			
64/128	Х				
256/512	Х	_			

11. Module: ADC

Converting the Internal Band Gap (IVREF) voltage source generates a High-Voltage Detect (HVD) event and aborts the conversion; therefore, this feature is not functional.

Work around

None.

Affected Silicon Revisions

Device Flash	I	Device S	Silicon F	Revision	1
Memory (KB)	ory (KB) A0	A2			
64/128	Х	Х			
256/512	Х	_			

12. Module: HVD

On power-up, the High-Voltage Detect Reset, event flag (HVDR bit in the RCON register) is set incorrectly.

On a power-up, only the POR, BOR, and EXTR bits should be set with the proper VCAP bypass capacitor value, as stated in the current data sheet.

Work around

Check the status of the POR bit in the RCON register when checking the HVDR bit. If the POR bit is set, both bits can be cleared as the HVDR bit is a false detection. If the POR bit is clear, the HVDR bit has been correctly detected and can be handled according to the requirements of the application.

Affected Silicon Revisions

Device Flash	Device Silicon Revision				
Memory (KB)	A0	A2			
64/128	Х	Х			
256/512	Х	_			

13. Module: Power-Saving Modes

On exit from Sleep mode, both the SLEEP and IDLE status bits in the RCON register are set.

Work around

Add the following code to the user application at the point it wakes from Sleep mode:

```
rcon_var1 = RCON;
// ... enter Sleep mode
if (rcon_var1 & 0x4) Nop();
// If IDLE bit already set previously
// before sleep do nothing
else RCONbits.IDLE = 0x0;
// If IDLE bit is not set previously
// and is after Sleep mode then clear
```

Device Flash	Device Silicon Revision				
Memory (KB)	A0	A2			
64/128	Χ	Х			
256/512	Х	_			

14. Module: UART

The UART auto-baud feature is intended to set the baud rate during run time based on external data input. However, this feature does not function.

Work around

None.

Affected Silicon Revisions

Device Flash	I	Device S	Silicon I	Revision	1
Memory (KB)	A0	A2			
64/128	Χ	Х			
256/512	Х	_			

15. Module: Bus Matrix

The Flash Memory Size register (BMXPFMSZ) was not programmed with the correct value.

Work around

Use a fixed number based on the size of the part being used.

Affected Silicon Revisions

Device Flash	I	Device	Silicon I	Revision	1
Memory (KB)	A0	A2			
64/128	Date	Date code			
256/512	pre-	1750			

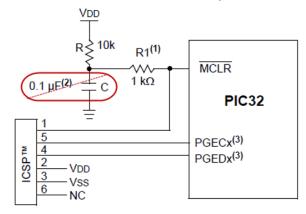
16. Module: I/O Port

RD15 & RF13 should be considered 4x Sink Driver Pins and not 8x Sink Driver Pins. See Parameter DO10, DO20, and DO20A in the data sheet.

Work around

None.

Affected Silicon Revisions


Device Flash	Device Silicon Revision				
Memory (KB)	A0	A2			
64/128	Χ	Х			
256/512	Х	_			

17. Module: I/O Port - Initial Pin State

On power-up depending on the VDD ramp rate, the I/O pins can be in an active random output driving state if MCLR is active until a BOR event.

Work around 1:

If, not using an external reset supervisor IC or equivalent, remove the \overline{MCLR} capacitor as shown below, and retain the \overline{MCLR} Pull-up resistor.

Work around 2:

If using an external reset supervisor IC or equivalent, increase the value of the VCAP capacitor to \geq 47 µf ceramic or solid tantalum capacitor with an ESR \leq 1 ohm.

Affected Silicon Revisions

Device Flash Memory (KB)	Device Silicon Revision					
	A0	A2				
64/128	Х	Х				
256/512	Х	_				

18. Module: USB Low-Speed Mode

USB Low-Speed mode is not functional in both Device and Host modes due to signal integrity compliance issues.

Work around 1:

Use USB Full-Speed mode.

Device Flash Memory (KB)	Device Silicon Revision					
	A0	A2				
64/128	Х	Х				
256/512	Χ	_				

Data Sheet Clarifications

The following typographic corrections and clarifications are to be noted for the latest version of the device data sheet (DS60001290**F**):

Note: Corrections are shown in **bold**. Where possible, the original bold text formatting

has been removed for clarity.

APPENDIX A: REVISION HISTORY

Rev A Document (10/2014)

Initial release of this document, issued for revision A0 silicon, which includes silicon issues 1 (ADC), 2 (Clock), 3 (JTAG), 4 (Watchdog Timer), 5 (USB), 6 (UART), 7 (Comparator Voltage), 8 (Comparator Voltage Reference), 9 (CTMU), 10 (CTMU) and 11 (ADC).

Rev B Document (7/2015)

Updated silicon issues 6 (UART) and 11 (ADC).

Added silicon issues 12 (HVD) and 13 (Power-Saving Modes).

Rev C Document (4/2016)

Revised document for silicon revisions A2.

Added silicon issue 14 (UART).

Modified Silicon DEVREV Value Table 1 and added Silicon DEVREV Value Table 2.

Updated the Silicon Issue Summary table (Table 3) and silicon issue 9 (CTMU).

Updated all Affected Silicon Revision tables.

Rev D Document (6/2018)

Added silicon issue 15 (Bus Matrix).

Rev E Document (8/2018)

Added Silicon Issue 16 (16. Module:I/O Port).

Revision F Document (08/2019)

Added Data Sheet Clarification .

Revision G Document (01/2020)

Added silicon issues 17. Module:I/O Port - Initial Pin State and 18. Module:USB Low-Speed Mode.

Revision H Document (04/2020)

Clarified Silicon Issues 17. Module:I/O Port - Initial Pin State and 18. Module:USB Low-Speed Mode to denote the lack of a Revision A2 silicon for devices with 256/512 KB Device Flash Memory.

NOTES:

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- · Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AnyRate, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, chipKIT, chipKIT logo, CryptoMemory, CryptoRF, dsPIC, FlashFlex, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PackeTime, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TempTrackr, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, FlashTec, Hyper Speed Control, HyperLight Load, IntelliMOS, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet-Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, Vite, WinPath, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, BlueSky, BodyCom, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, EtherGREEN, In-Circuit Serial Programming, ICSP, INICnet, Inter-Chip Connectivity, JitterBlocker, KleerNet, KleerNet logo, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, SAM-ICE, Serial Quad I/O, SMART-I.S., SQI, SuperSwitcher, SuperSwitcher II, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

 $\ensuremath{@}$ 2014-2020, Microchip Technology Incorporated, All Rights Reserved.

ISBN: 978-1-5224-5945-3

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199

Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston Westborough, MA Tel: 774-760-0087

Tel: 774-760-0087 Fax: 774-760-0088 Chicago

Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453 Tel: 317-536-2380

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 Tel: 951-273-7800

Raleigh, NC Tel: 919-844-7510

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110 Tel: 408-436-4270

Canada - Toronto Tel: 905-695-1980 Fax: 905-695-2078

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733

China - Beijing Tel: 86-10-8569-7000

China - Chengdu Tel: 86-28-8665-5511

China - Chongqing Tel: 86-23-8980-9588

China - Dongguan Tel: 86-769-8702-9880

China - Guangzhou Tel: 86-20-8755-8029 China - Hangzhou

Tel: 86-571-8792-8115

China - Hong Kong SAR Tel: 852-2943-5100

China - Nanjing Tel: 86-25-8473-2460

China - Qingdao Tel: 86-532-8502-7355

China - Shanghai Tel: 86-21-3326-8000

China - Shenyang Tel: 86-24-2334-2829

China - Shenzhen Tel: 86-755-8864-2200

Tel: 86-755-8864-2200 China - Suzhou

Tel: 86-186-6233-1526 China - Wuhan

Tel: 86-27-5980-5300 China - Xian

Tel: 86-29-8833-7252

China - Xiamen Tel: 86-592-2388138

China - Zhuhai Tel: 86-756-3210040

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444

India - New Delhi Tel: 91-11-4160-8631

India - Pune Tel: 91-20-4121-0141

Japan - Osaka Tel: 81-6-6152-7160

Japan - Tokyo Tel: 81-3-6880- 3770

Korea - Daegu Tel: 82-53-744-4301

Korea - Seoul Tel: 82-2-554-7200

Malaysia - Kuala Lumpur Tel: 60-3-7651-7906

Malaysia - Penang Tel: 60-4-227-8870

Philippines - Manila Tel: 63-2-634-9065

Singapore Tel: 65-6334-8870

Taiwan - Hsin Chu Tel: 886-3-577-8366

Taiwan - Kaohsiung Tel: 886-7-213-7830

Taiwan - Taipei Tel: 886-2-2508-8600

Thailand - Bangkok Tel: 66-2-694-1351

Vietnam - Ho Chi Minh Tel: 84-28-5448-2100

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen

Tel: 45-4485-5910 Fax: 45-4485-2829

Finland - Espoo Tel: 358-9-4520-820

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Garching Tel: 49-8931-9700

Germany - Haan Tel: 49-2129-3766400

Germany - Heilbronn Tel: 49-7131-72400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Germany - Rosenheim Tel: 49-8031-354-560

Israel - Ra'anana Tel: 972-9-744-7705

Italy - Milan

Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Padova Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Norway - Trondheim Tel: 47-7288-4388

Poland - Warsaw Tel: 48-22-3325737 **Romania - Bucharest** Tel: 40-21-407-87-50

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Gothenberg Tel: 46-31-704-60-40

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820